Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown
نویسندگان
چکیده
The availability of high-throughput parallel methods for sequencing microbial communities is increasing our knowledge of the microbial world at an unprecedented rate. Though most attention has focused on determining lower-bounds on the α-diversity i.e. the total number of different species present in the environment, tight bounds on this quantity may be highly uncertain because a small fraction of the environment could be composed of a vast number of different species. To better assess what remains unknown, we propose instead to predict the fraction of the environment that belongs to unsampled classes. Modeling samples as draws with replacement of colored balls from an urn with an unknown composition, and under the sole assumption that there are still undiscovered species, we show that conditionally unbiased predictors and exact prediction intervals (of constant length in logarithmic scale) are possible for the fraction of the environment that belongs to unsampled classes. Our predictions are based on a poissonization argument, which we have implemented in what we call the Embedding algorithm. In fixed i.e. non-randomized sample sizes, the algorithm leads to very accurate predictions on a sub-sample of the original sample. We quantify the effect of fixed sample sizes on our prediction intervals and test our methods and others found in the literature against simulated environments, which we devise taking into account datasets from a human-gut and -hand microbiota. Our methodology applies to any dataset that can be conceptualized as a sample with replacement from an urn. In particular, it could be applied, for example, to quantify the proportion of all the unseen solutions to a binding site problem in a random RNA pool, or to reassess the surveillance of a certain terrorist group, predicting the conditional probability that it deploys a new tactic in a next attack.
منابع مشابه
P´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملP´olya-Type Urn Models with Multiple Drawings
We investigate the distribution, mean value, variance and some limiting properties of an urn model of white and red balls under random multiple drawing (either with or without replacement) when the number of white and red balls added follows a schedule that depends on the number of white balls chosen in each drawing.
متن کاملComparison of Conduction Based and Mediator Based Models for Microbial Fuel Cells
Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and microbial distribution and growth in batch flow mode. The outputs of the model and that of a mediator based mode...
متن کاملBranches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملPREDICTIVE MODELS OF THE DOMINANT PERIOD OF SITE USING ARTIFICIAL NEURAL NETWORK AND MICROTREMOR MEASUREMENTS: APPLICATION TO URMIA, IRAN
Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011